@ProjectZKM has released zkMIPS 1.0, the first fully production-ready version of its MIPS-based virtual machine designed for high-performance verifiable computation: https://zkm.io/blog/zkmips-1-0-production-ready-performance-optimized-and-open-for-developers… This is the most significant upgrade since the project began, delivering a 6x to 19x performance boost over version 0.3.0, thanks to a complete technical overhaul.
Some key aspects of the upgrade include:
The system is already integrated into the ZKM Proof Network and is being used to live-prove @ethereum mainnet blocks as part of the @ethereumfndn’s @eth_proofs initiative. It's also live in production with @GOATRollup, a Bitcoin L2 built on BitVM2.
Multiple media outlets picked up the news straight off the bat, with @Utoday_en publishing an exclusive feature about what sets the project apart from other zkVMs:https://u.today/zkm-launches-zkmips-10-pioneering-zero-knowledge-virtual-machine… The article offers overall praise for the ZKM team and its notable engineering quality, and emphasizes that choosing MIPS32r2 over RISC-V offers architectural advantages: shorter programs, fewer constraints, and better alignment with ZK circuits.
The launch also saw comments from Ethproofs, @a16zcrypto, and House of ZK's very own @0x1164: https://x.com/0x1164/status/1920004405895594100…
ZKM announced a public discussion of the zkMIPS 1.0 release, with the project’s CTO, @sd_eigen, discussing optimizations, benchmark results, system architecture, and future development plans.
The event will take place on May 12 at 12pm UTC: https://x.com/i/spaces/1LyxBWjMeEYKN/peek…
In a recent article, the project explained why, in developing its zkMIPS virtual machine, the team chose the MIPS32r2 architecture over RISC-V - even though the latter is the default choice for most modern zkVMs.The piece states that the decision wasn’t about being different, but about selecting the most efficient foundation for scalable verifiable computation.
One of the main reasons was the higher instruction density of MIPS32r2. With operations like MOVZ, MOVN, and MADDU, complex logic can be expressed in fewer steps, reducing execution trace length. In contrast, the same logic on RISC-V often requires more instructions, increasing proof burden.
Another factor was the maturity and stability of the MIPS ecosystem. With decades of usage and a fixed specification, MIPS is well-tested - even used in critical systems like Optimism’s fraud-proof VM. RISC-V, although growing fast, is still evolving and fragmented.
The complete article can be found here: https://zkm.io/blog/why-zkm-chose-mips32r2-over-risc-v-for-zkmips